China used more than half of world's ICs in 2012

0023ae82ca0f13af1f6d03 China's semiconductor use has hit a record high and accounts for more than half of the global market, but the country is overly dependent on foreign suppliers for relevant products, according to a PricewaterhouseCoopers report issued on Thursday.

With an 8.7 percent growth in 2012, China's semiconductor use was 52.5 percent of the total worldwide, said a PwC report titled China's Impact on the Semiconductor Industry - 2013 Update. Semiconductors act as an engine now driving an increasing amount of the technology in people's lives.

The growth in Chinese semiconductor use is a remarkable contrast to the global market for semiconductors, which experienced an overall decline of3 percent in 2012, the report said.

China is expected to continue its domination of semiconductor purchasing in the foreseeable future with its market share possibly reaching 60 percent by 2017,Raman Chitkara, PwC's global technology and semiconductor leader, said in an interview with China Daily.

"One of the major reasons why China has grown so big in semiconductor consumption is that the country isrising to become the world's capital of electronic manufacturing," Chitkara said.

Get free daily email updates!

Follow us!

India Plans To Build 2 Wafer Fabs

FAB_INDIA The government of India on Thursday approved "in principle" a plan to construct and equip two wafer fabrication facilities in the country, in a move designed to reduce India's reliance on imported semiconductors. Two consortia will go ahead with the twin fab projects. One is led by STMicroelectronics, an integrated device manufacturer, and the other is spearheaded by Tower Semiconductor, a silicon foundry. These companies will add their names to list of VLSI companies in India and boost the manufacturing capability.
"The Cabinet has given in-principle approval for setting up of semiconductor wafer fabrication manufacturing facilities," Information and Broadcasting Minister Manish Tewari told reporters after a meeting of the Union Cabinet, chaired by Prime Minister Manmohan Singh.
After considering proposals from two consortia, the government took the decision. The government received proposals from two consortiums to set up chip fabrication units in the country. One was led by Israel's Tower Jazz and the other was led by Geneva–based chipmaker STMicroelectronics.
Israel-based foundry chipmaker Tower Semiconductor Ltd, which operates under the brand name TowerJazz, partnered with IBM and Indian infrastructure conglomerate Jaypee Associates to build and operate a 300mm chip facility in India. On the other hand, STMicroelectronics partnered with Hindustan Semiconductor Manufacturing Corp. (HSMC).
Welcoming the government's decision, India Electronics & Semiconductor Association (IESA) President PVG Menon said, "The IESA deems the fab a highly strategic game changer for India. Some of the world's leading economies including the USA, France, Germany, Ireland, Japan, Singapore, Taiwan and China besides a number of developing economies like Malaysia and Israel have their own fabs. These fabs continue to contribute significantly to the growth and development of the economy of their respective countries and we hope that this would be the case in India as well."
Get free daily email updates!
Follow us!



Cisco’s nPower chips for moving data at 400 Gbps

cisco_networking_chip Semiconductors continue to advance, as a slew of announcements by Intel and Apple’s new A7 processor showed this week. But don’t forget about Cisco Systems.

The biggest provider of routing and switching systems has long retained the capability to design specialized processors for its hardware, as well as turn to off-the-shelf chips from commercial suppliers where that makes the most sense. Now Cisco designers have come up with another singular piece of home-grown silicon.

It’s a new product line called the nPower, and Cisco says the chips can pump as much as 400 gigabits of data per second. By contrast, the company’s prior technology could handle 140 gigabits and required more than one chip, Cisco says. The new capacity translates into hundreds of millions of transactions per second.

To what end? Of course, computer and smartphone users will continue to watch more YouTube videos and the like. But Surya Panditi, Cisco’s senior vice president and general manager of engineering, says a key driver for the technology is a coming change in the nature of network traffic.

Get free daily email updates!

Follow us!

Android Kitkat

 VLSI-Encyclopedia-Android-KitkatGoogle recently announced its latest version of Android - 4.3 Jelly Bean, which turned out to be nothing to write home about. Ever since then, the next iteration of Android OS has taken the spotlight and has been the talk of the town.

Just when all of us thought that Android 5.0 Key Lime Pie would be the next upcoming version of the Android OS, Google has announced that the successor of the Android 4.3 Jelly Bean would be named KitKat (yeah, the brand) and it is Android 4.4, not 5.0 as rumored before.

Sundar Pichai, the Android and Chrome head has confirmed the naming scheme of the next version of Android. Android 4.4 KitKat is named after Neslte's popular candy bar, which is trademarked and licensed by Hershey in the US.

Google also says that "it's our goal with Android KitKat to make an amazing Android experience available for everybody". The bold statement also suggests that Google plans to make use of its next iteration of Android in smart watches, gaming consoles and other electronic gadgets.

Here's the list of past Android versions with the dessert naming scheme:

Android 1.5: Cupcake

Android 1.6: Donut

Android 2.0: Eclair

Android 2.2: Froyo

Android 2.3: Gingerbread

Android 3.0: Honeycomb

Android 4.0: Ice Cream Sandwich

Android 4.1: Jelly Bean

Android 4.2: Jelly Bean

Android 4.3: Jelly Bean

Android 4.4: KitKat

 

Get free daily email updates!

Follow us!

Microsoft To Acquire Nokia's Devices And Services

nokia-lumia-800 Nokia, once a world leader in the mobile phone market, has had a tough few years and attempts by the company to join in on the smartphone explosion did not go well.

Nokia has seem somewhat of a resurgence lately with a series of high quality smartphones on the Windows Phone platform. Many of the phones such as the Lumia 928, 928 and 1020 with it's 41 megapixel are excellent devices and offer a real choice for anyone wanting to escape the ecosystems of Apple and Android. In fact the majority of users who actually try their Windows Phones quickly find that they enjoy the very different experience they have had with their previous smartphones. The problem for Nokia and Microsoft was getting users to even think about separating from their iPhone or Android device. 

According to the companies' press releases, 32,000 people will transfer across Microsoft, including 4,700 people in Finland and 18,300 employees directly involved in product manufacture. If you thought it was only the Windows Phone component of the phone business, you'd be wrong: Microsoft will also take into ownership Nokia's Asha range of feature phones. Patent-wise, Microsoft gets 10-year non-exclusive license to its Finnish partner's library of ideas and "reciprocal rights" to use Microsoft patents within its HERE mapping services. While Microsoft will be able to use the Nokia branding on its products, the Finnish company will now focus on its mapping, infrastructure and advanced tech arms.

In 2011, after writing a memo that said Nokia lacked the in-house technology and needed to jump off a "burning platform", Elop made the controversial decision to use Microsoft's Windows Phone for smartphones, rather than Nokia's own software or Google's (GOOG.O) ubiquitous Android operating system.

The deal will see Microsoft taking full control over Nokia's Smart Devices and Mobile Phones business units, which produce the Lumia family of smartphones and low-cost featurephones respectively. Nokia, meanwhile, retains its telecommunications hardware business Nokia Siemens Networks, Here location-based services arm, and its patent portfolio under the Advanced Technologies division. These patents are to be licensed to Microsoft for at least a ten-year period, the agreement states.

The acquisition will truly allow  Microsoft to enter the market in direct competition with its Windows Phone licensees. It's a move that was first telegraphed by the launch of the Surface family, which put the company in direct competition with third part manufacturer's in the Windows 8 and Windows RT tablet markets.
Nokia first started producing phones back in 1996 and for many years they were one of main innovators of smartphones. Of course the release of the iPhone in 2007 and the emergence of Android devices began to strangle Nokia. During the past couple of years Microsoft has provided a kind of life boat to Nokia with their Windows Phones and now it looks like Microsoft has taken over the reins entirely.
Time will tell for both Nokia and Microsoft, but at this very early point I believe it is a good move for both companies and consumers.

Get free daily email updates!

Follow us!

VLSI Project And Training At Ahmedabad


Chip design in India has been identified as a prominent industry to support the already achieved development in IT field. With growing design houses day by day, a large pool of highly skilled individuals is needed to meet this demand. But, a potential gap was evident in the expectations of the industry and the output from academic institutions.


Realizing this need for trained manpower, we had launched a Certificate in Digital VLSI Design with emphasis on Digital CMOS circuit design, VLSI design flows, verification and testing including a minor and a major project. This course will be effective in providing potential engineers with exposure to both front-end and back-end processes in VLSI Design.



At Ahmedabad few institutions are offering courses in VLSI Front-end designing with following course contents.


Advance Digital Design

  • Digital Logic Fundamentals
  • Combinational logic design
  • Sequential logic design
  • Programmable logic
  • State machines
VHDL
  • VHDL Overview and Concepts
  • Levels of Abstraction
  • Entity, Architecture
  • Data Types and declaration
  • Enumerated Data Types
  • Relational, Logical, Arithmetic Operators
  • Signal and Variables, Constants
  • Process Statement
  • Concurrent Statements
  • When-else, With-select
  • Sequential Statement
  • If-then-else, Case
  • Slicing and Concatenation
  • Loop Statements
  • Delta Delay Concept
  • Arrays, Memory Modeling, FSM
  • Writing Procedures
  • Writing Functions
  • Behavioral / RTL Coding
  • Operator Overloading
  • Structural Coding
  • Component declarations and installations
  • Generate Statement
  • Configuration Block
  • Libraries, Standard packages
  • Local and Global Declarations
  • Package, Package body
  • Writing Test Benches
  • Assertion based verification
  • Files read and write operations
  • Code for complex FPGA and ASICs
  • Generics and Generic maps
VERILOG
  • Language introduction
  • Levels of abstraction
  • Module, Ports types and declarations
  • Registers and nets, Arrays
  • Identifiers, Parameters
  • Relational, Arithmetic, Logical, Bit-wise shift Operators
  • Writing expressions
  • Behavioral Modeling
  • Structural Coding
  • Continuous Assignments
  • Procedural Statements
  • Always, Initial Blocks, begin ebd, fork join
  • Blocking and Non-blocking statements
  • Operation Control Statements
  • If, case
  • Loops: while, for-loop, for-each, repeat
  • Combination and sequential circuit designs
  • Memory modeling,, state machines
  • CMOS gate modeling
  • Writing Tasks
  • Writing Functions
  • Compiler directives
  • Conditional Compilation
  • System Tasks
  • Gate level primitives
  • User defined primitives
  • Delays, Specify block
  • Testbenchs, modeling, timing checks
  • Assertion based verification
  • Code for synthesis
  • Advanced topics
  • Writing reusable code
FPGA Flow
  • Re-configurable Devices, FPGA’s/CPLD’s
  • Architectures of XILINX, ALTERA Devices
  • Designing with FPGAs
  • FPGA’s and its Design Flows
  • Architecture based coding
  • Efficient resource utilization
  • Constrains based synthesis
  • False paths and multi cycle paths
  • UCF file creation
  • Timing analysis/Floor Planning
  • Place and route/RPM
  • Back annotation, Gate level simulation, SDF Format
  • DSP on FPGA
  • Writing Scripts
  • Hands on experience with industry Standard Tools
  • Synthesis Concepts
  • HDL Implementation design cycle
  • ASIC Implementation design cycle
  • Sequential design optimization
  • Synchronous Design
  • Asynchronous design
  • Guidelines for reset
  • Synchronous and Asynchronous reset
  • Guidelines for clock structures
  • Gated clocks
  • VHDL synthesis
  • Synthesizable and Non-synthesizable VHDL constructs
  • Verilog Synthesis
  • Synthesizable and Non-synthesizable VHDL constructs
Timing Analysis
  • Static timing analysis
  • Dynamic timing analysis
  • Setup time
  • Hold time
  • Setup and Hold checks
  • Setup and Hold timing analysis
  • Timing paths
  • Clock skew
SystemVerilog
  • SystemVerilog data types
  • Nets and veriables
  • Modules and processes
  • Interfaces
  • SystemVerilog assertions
  • Module based SystemVerilog Verification
  • Introduction to SystemVerilog classes
  • Randomization in SystemVerilog
  • Functionsla coverage
 
Verification concepts. Testbench environment development using UVM/OVM methodologies.

Total course duration including major project: 6 months


Course Highlights :

  • Advanced Digital Design And Verilog Coding Techniques
  • Advanced Verification Techniques
  • Synthesis and Static Timing Analysis
  • Floor Planning, Placement And Routing
  • Interview Preparation and Mock Interviews

For more detail please write to

info@vlsiencyclopedia.com 
Contact : +91-9824245665

Popular Posts