Dynamic Timing Analysis

Dynamic timing analysis verifies circuit timing by applying test vectors to the circuit. This approach is an extension of simulation and ensures that circuit timing is tested in its functional context. This method reports timing errors that functionally exist in the circuit and avoids reporting errors that occur in unused circuit paths.

The most common dynamic timing analysis is the so-called min-max analysis method. Under min-max timing analysis, both minimum and maximum delays of circuit components are used to generate outputs, which are ranges (the spread of earliest data and latest arrival data) instead of edges. Since outputs are in turn fed into inputs, managing the ranges (merging them) can become very complex. As can be seen, if both min version & max version of the delays must be used, the simulation speed will be extremely slow.

Another major issue with dynamic timing analysis is the incomplete coverage. It may only check circuitry that is exercised by test stimulus, which may leave critical paths untested, and timing problems undiscovered. It is also not path oriented. Since dynamic timing analysis reports errors on a certain pin at a certain time, the user must trace through the schematic to locate the path that caused the problem (difficult for large designs).

Finally this method requires development time for test vectors. Dynamic timing analysis tools often track more information than logic simulators, making their performance slower. Also each component must contain both timing information and a functional model before timing verification can proceed. This could prevent the use of new parts that do not have functional models.

It should be noted that min-max simulation is not currently used in the industry. Instead, either functional simulation with timing (timing simulation) or formal verification method is typically used to verify complex IC designs. Typically people use the max version of delays to verify the circuit works under worst-case timing (no setup issues) and min version of the delays to verify best-case timing (no hold issues).

Advantages:
1. Extends coverage of circuit simulation (edges to region).
2. Evaluates worst-case timing using both min. and max. delay values for components.
3. Uses the same test stimulus as logic simulation.
4. Does not report false errors.

Disadvantages:
1. It is not complete.
2. It is not path oriented.
3. It is slower than logic simulation and may require additional test stimulus.
4. It requires functional behavioral models.

Dynamic timing analysis extends logic simulation by reporting violations in terms of simulation times and states. To test circuit timing using worst-case conditions, dynamic timing analysis evaluates the circuit using minimum and maximum propagation delays for each component for each component in the design.

Since dynamic timing analysis performs a simulation, it can use the same stimulus as a logic simulation. Because the stimulus functionally exercises the design, false errors of unused or uninteresting paths are not tested. Note a timing simulation reports results differently than a logic simulation. A logic simulation reports results as edge times and a timing simulation reports results as regions of ambiguity. The results of a timing simulation do not specify exactly when an event occurs, they specify a range of time in which an event can occur.

No comments:

Post a Comment

Please provide valuable comments and suggestions for our motivation...

Popular Posts